If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-2x-44=0
a = 2; b = -2; c = -44;
Δ = b2-4ac
Δ = -22-4·2·(-44)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{89}}{2*2}=\frac{2-2\sqrt{89}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{89}}{2*2}=\frac{2+2\sqrt{89}}{4} $
| 2(3x–2)=3–(3–x) | | -4/g=-2 | | 2b=4(b+10) | | 5x+8-7x=−4x+1 | | 55=9(x+3) | | 5·(x-3)=20 | | 8=2(s-3) | | (5y−2)(7y−1)=0 | | -3(6x-9)=-63 | | 0=-4t+7 | | 55=(9x+3) | | x=107x | | 49.8+w+13.3=59.6 | | x²+x+2=3 | | 2(-7x-6)=-152 | | (1+x)5=25 | | 4(-x+6)=68 | | 3*x=258 | | 195.5(x)=2924.68 | | (7y+5)=103 | | -2g=-10+3g | | 2*15+5y=120 | | y+9=115 | | 2*15+5y=20 | | 122+x=65 | | -9=-1+x+3x | | x/3.4=10.2 | | -3z=-4-4z | | 195.5*x=2924.68 | | 88.3=n-(6.8) | | 4+10y–8=2y+12 | | 5x–9=2x+12 |